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Abstract: The cationic palladium complex (phen)Pd(Me)(OEt))* BArs~ [phen = 1,10-phenanthroline; Ar = 3,5-
CeH3(CF3)2] catalyzed the cyclization/hydrosilylation of functionalized 1,7-dienes to form silylated cyclohexanes
in good yield and with moderate to good trans-selectivity. © 1999 Elsevier Science Ltd. All rights reserved.
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We recently reported that the cationic Pd(II) complex (phen)PdMe(OEt;)* BArs~ fphen = 1,10-
phenanthroline; Ar = 3,5-CgH3(CF3)2] (1) in CHyCly serves as an effective catalyst for the
cyclization/hydrosilylation of 1,6-dienes to form silylated cyclopentane derivatives (Scheme 1).1-3 The potential
of this protocol stems from its high reactivity, good functional group compatibility, low air- and moisture-
sensitivity, and high trans-selectivity of ring closure. Because six-membered carbocycles represent the most
common ring size found in naturaily occurring compounds, we hoped to apply our cyclization/hydrosilylation
protocol to the synthesis of silylated cyclohexane derivatives. Unfortunately, our initial attempts to cyclize 1,7-
dienes employing 1 met with limited success. However, our recent discovery that 1,2-dichloroethane (DCE) is a
superior solvent to methylene chloride for both the Pd-catalyzed cyclization/hydrosilylation of 1,6-dienes? and
the cyclization of alkenylsilanes has led to the development of an effective protocol for the cyclization of 1,7-
dienes to form silylated cyclohexanes. Here we report our initial results in this area.
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We began our study employing dimethyl-4,4-dicarboxy-1,7-octadiene (2). Treatment of 2 with
triethylsiiane and 1 (5 mol %) led to rapid and complete consumption of starting material, but formed an
intractable mixture of mono-silylated products in 71 % combined yield (Table 1, entry 1). We reasoned that the
lack of selectivity arose, at least in part, from indiscriminate attack of the Pd-Si intermediate on either olefin of
the diene.! In an effort to circumvent this problem, we employed the symmetric tetracarboxylate derivative 3.
Reaction of 3 with triethylsilane and 1 (5 mol %) was complete within 5 min at room temperature with formation
of a 22:1 mixture of trans:cis silylated cyclohexanes 4 (entry 2). Evaporation of solvent and flash
chromatography of the residue gave trans-4 in 93% and cis-4 in 3% yield.6 Diene 3 also reacted with dimethyl-
t-butylsilane to give carbocycle § in good yield and with good diastereoselectivity (entry 3). However, reaction
of 3 with dimethylbenzylsilane led to formation of both carbocycle 6 and disilylated-uncyclized product 7 (entry
4), while reaction of 3 with dimethylphenylsilane led to exclusive formation of the disilylated product 8 (entry
5).

The cyclization/hydrosilylation protocol tolerated substitution at the terminal olefinic carbon atom. For
example, reaction of triethylsilane with substituted tetracarboxylate derivative 9 in the presence of 1 (10 %)
formed carbocycle 10 in 51 % yield as a single isomer by NMR spectroscopy (entry 6). The substituted
dicarboxylate derivative 11 also reacted with triethylsilane in the presence of 1 (5 %) to form carbocycle 12 in 68
% yield as a 1.6:1 mixture of trans:cis isomers (entry 7). We have also applied this protocol to the formation of
fused bicyclic compounds employing acylated 2,3-diallyl-4,5-dimethylhydroquinone derivative 13. For
example, treatment of 13 with triethylsilane in the presence of 1 (5 mol %) led to the isolation of the
corresponding fused bicycle 14 in 64 % yield as a 6:1 mixture of trans:cis diastereomers (entry 8). Higher
catalyst loading (10 %) led to dramatic improvement in the yield (99 %) as well as slight improvement in
diastereoselectivity (8:1) (entry 9). Diene 13 also reacted with dimethylphenylsilane, dimethylbenzylsilane, and
dimethyi-r-butylsilane to form bicycles 15 - 17, respectively, in fair to good yield and with good trans selectivity
(entries 10-12).

In summary, we have shown that 1 in DCE solvent serves as an effective catalyst system for the
cyclization/hydrosilylation of selected 1,7-dienes to form silylated cyclohexanes. However, formation of six-
membered rings employing 1 is clearly less favorable than is the formation of five-membered carbocycles. For
example, cyclization of 1,7-dienes was typically slower, required higher catalyst loading, and gave lower trans-
selectivity than did the cyclization of 1,6-dienes. In addition, cyclization of 1,7-dienes with sterically hindered
silanes or cyclization of substituted dienes tended to form silylated-uncyclized products in addition to the desired
carbocycles. This behavior is not surprising as palladium complexes are typically more effective for the
formation of five-membered rings than for the corresponding six-membered rings.” We are currently working
towards the development of more active catalysts for the cyclization/hydrosilylation of 1,7-dienes.
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Table 1. Cyclization/hydrosilylation of 1,7-dienes catalyzed by 1 in 1,2-dichloroethane at 25 °C.
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3 (E = CO,EN trans-4 {93) cls-4 {3)
E
3 HSIMe,#-Bu SiMet-Bu 5 3h >25:1°
Me
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P g Et
9(E = COzEt)® HSIEt, 10 (51)
t
iEt
E e E
11 (E = CO,Me)® 12 (68)
Ac Ac
Me
Me & iRy
Me Me Me
OAc OAc
8 13 HSIEt, 14 (64) 5 30 min 6:1
14 (99) 10 20min g
10 HSiMe,Ph 15 (93) 10 1h 12:1
1 HSIMe,Bn 16 (40) 10 15min  20:1
12 HSIiMe,#Bu 17 (35) 10 2h 20:1

3Yjelds refer to material of >95 % purity as determined by 'H NMR and GC analysis. All new compounds characterized by 1H and
13C NMR spectroscopy, IR spectroscopy, combustion analysis, and/or HRMS. Ycis-trans Ratio of the carbocyclic product
determined by capillary GC or HPLC analysis of the crude reaction mixture. SDetermined by 'H and 13C NMR analysis. 94:1

Mixture of trans:cis isomers.
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